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Abstract

It is well known that if A and B are two positive definite matrices of the

same order and 0<A<1, then

[, A + (1-lX)B < ,-l + -X)B-

It is easy to construct an example consisting of two positive semi-definite matrices

for which the above inequality is not true when one replaces the inverse operation

by Moore-Penrose inverse operation. In this paper, we give necessary and sufficient

conditions for thevalidity of-the inequality j

V f\A+ (.I-,)B] < XA + (-X)B

for every 0< X< 1. As an application, we give a sufficient condition under which

. the inequality (EA)+< E(A ) is valid, where A is a square matrix of random variables

which is almost surely positive semi-definite, generalizing the well-known result

(EA) < EA when A is almost surely positive definite.

AMS subject classification: Primary 15A09, 15A45 Secondary 62H99

Key Words and Phrases: g-inverse, Moore-Penrose inverse, optimal designs, random
matrices
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1. Introduction:

Fedorov (1972, Theorem 1.1.12, p. 19) states that if A and B are positive

definite matrices and 0< X.< 1 is any real number, then

[XA+ (1-X)B]-< XA-+ (l-X)B - I . (1)

(We say that, for two square matrices C and D of the same order, C< D if D- C is

positive semi-definite.) For a proof of this inequality, see Moore (1973, p. 408)

or Marshall and Olkin (1979, pp. 469-471).

The above inequality is useful in optimal designs and, especially, in linear

optimal designs. This inequality is used in Lemma 2.9.1 of Fedorov (1972, p. 123].

Let D be the collection of all square matrices of order q and L a real linear func-

tional on D, i.e.,

L(A+B)- L(A)+ L(B) for every A,B4 D, (2)

and

L(cA)- cL(A) for every c real and AE V. (3)

Assume, further, that

L(A) >0 if A is positive semi-definite. (4)

". Consider an optimal design problem involving q parameters. Let M be the collection

of all information matrices and M the collection of all non-singular information

matrices. Let L be a linear functional satisfying the above three conditions.

Lemma 2.9.1 of Fedorov [1972, p. 123] says that the function

LI: Ml-. R

defined by L1 (M)- L(M - ), M l is a convex function on X, i.e.

-..-........ 
.....
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LXMi+ (I-X)M 2 ] < XLI(M) + (I-X)LI(M 2),

for any Ml M2E A and 0< X< 1. This is a simple consequence of the inequality (1)

and the conditions (2), (3) and (4).

In Remark 1 on page 124, Fedorov comments that if ME M is singular, one can

consider Moore-Penrose inverse M+ of M and define L (M)- L(M +). See also Remark 1
1

to Theorem 2.7.1. In other words, if we define L M 4 R by

L1 (M)-L(M
+ ), M' being the Moore-Penrose of M, MEM,

his remarks seem to mean that L is a convex function on M. We show that this is

not true in general.

In this connection, we ask the following question. Let A and B be two posi-

tive semi-definite matrices of the same order and 0< X< 1 be any real number. Is

the inequality

[XA+ (1-X)B]+< XA++ (1-X.)B +  (5)

analogous to (1), true?

The organization of this paper is as follows. In Section 2, we give a necessary

and sufficient condition for (5) to be valid for every 0< X< 1. In Section 3, we

we study this inequality in the context of a collection of positive semi-definite

matrices indexed by a probability space. In particular, we examine under what con-

+ +
ditions (EA) < EA when A is a symmetric matrix of random variables such that A is

almost surely positive semi-definite.
(-

For any matrix A, range of A is defined to be the linear space spanned by the

columns of A and it is denoted by R(A). A denotes an arbitrary g-inverse of A, i.e.

a matrix satsifying AA-A - A. For basic ideas concerning Moore-Penrose inverse,

see Rao and Mitra (1971, pp 50-53).

. % %
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2. Convexity of the Moore-Penrose Inverse:

The following result gives conditions under which (5) holds for every 0< < 1.

Theorem 1. Let A and B be two real positive semi-definite matrices of the same

order. Then the following are equivalent:

i) R(A) - R(B).

(ii) There exist positive semi-definite g-inverses A and B of A and B re-

spectively such that [%A+ (I-X)B]-< %A7+ (l-X)B- for some positive semi-defintie

g-inverse [XA+ (l-X)B] of XA+ (I-X)B and for every 0< X< 1.

(iii) [XA+ (l-X)BI < XA + (I-k)B for every 0< X< 1.

Proof: The proof of (i) -> (iii) is similar to the proof of the remark in Giovagnoli

and Wynn (1985, p. 129). Let P be an orthogonal matrix such that A- P diag(Al,O)P 
T

where A, is a diagonal positive definite matrix. When R(A) = R(B), we then have

B - P diag(B1,0)P
T where B1 is positive definite. To show that (iii) holds, we

have to show that [XA+ (I-X)B] -1< I1+ (I-1)B-l , which is true since A1 and B

are positive definite. (iii) -> (ii) is obvious. We bhall now prove (ii) -> (i).

Suppose [XA+ (I-X)B)]-< A-+ (I-X)B- for positive semi-definite g-inverses A7 and

B (independent of X) and a positive semi-definite g-inverse [XA+ (l-X)B] for

every X as specified in the theorem, Premultiply and postmultiply the above by

XA + (l-X)B yielding XA+ (I-XIB< [XA+ CI-X)B][XA-+ (l-X)B-][XA+ (1-A)B].

If R(A) # R(B), assume without loss of generality that R(A) is not contained in R(B),

in which case there exists a vector b satisfying Abo 0 and Bb= 0. Premultiplying

and postmultiplying the above inequality by bT and b respectively lead to

T 3 T 2 T- T T- T%b Ab< X b Ab+ 2 (!-X)b AB-Ab or equivalently b Ab< X(b AB Ab- b Ab), when 0< X< 1.

TBut, since b Ab> 0, the above inequality cannot hold for all 0< X< 1. This completes

the proof.

Remark 1. From Theorem 1 it follows that when A is positivesemi-definite the func-

tion A- A+ is matrix convex iff A varies over a set of positivesemi-definite matrices

, . , . -. - .S- . . - . 'e
. '
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with the same range. The 'if' part of this assertion is proved in Giovagnoli and

Wynn (1985).

Remark 2. For a given X with 0< X< 1, one can always find positive semi-definite

g-inverses [(A+(l-A)B]-, A7 and B- (depending on X) and satisfying [XA+(l-X)B]-

< AA- + (1-A)B- even though RCA) and R(B) are different. This could be seen as

follows. Let P be a nonsingular matrix satisfying A - P diag(AA2O)PT and

B - P diag(D1 ,0,D2,O)P
T where A1,A2 ,,D 2 are diagonal positive definite matrices.

The existence of such a P is guaranteed by Theorem 6.2.3 in Rao and Mitra (1971).

For a given 0< X< 1, consider the g-inverses [AA+(l-X)B]- - (PT)-Idiag[((A+(l )-i,

Oa 2)-, ((l-A)D 2 )-1 0]p , A7 - (PT ) diagCA 1a 2 1M,O)P-1 and B-- (pT ) diag(D1 , ND 2 ,0)P

where M and N are positive semi-definite matrices satisfying (A2)-I < N+ AAU-l and
2 2

((l-X)D2)-I<M+ (1-X)D2I . With such a choice of M and N, it can be verified that
2-2

[XA+ (1-A)B] xAA+ (1-X)B.

Corollary 1. Let Al....,A be k real positive semi-definite matrices. Then

(Al,+"'+Xkk)+<' lA+...+.A for every X satisfying 0< Xi_1 i-1,2,...,k)
k

and i X" 1 iff R(Ai) - R(A ) for i,j - 1,2,...,k.

Proof. We shall prove the result for k= 3. The proof in the general case follows

along similar lines, by induction. Assume A < l, R(A)- R(A2)- R(A 3 ). ThenA
l) +

" 2 3+ +A 2  3 +
( 1 A.J+A 2 A2 +A3 A3 ) 1 " " ' 2 + _X - A 1  1 <A12+7x

A2  X3
(applying Theorem 1). Since - 1 l - 1, applying Theorem 1 again, we get

+ 2 + 3 + + + +(X1Al+ XA2+X3A3)+< XlA+ (_2l) + f X- a X - lA+ X2A2+ X3A3, which con-

cludes the proof of tize 'if' part., To prove the 'only if' part, choose A3 - 0. Then

from Theorem 1, we get R(A ) w R('). Similarly R(Ai) - R(A ) for all ij.

Corollary 2. Let An, n> 1 be a sequence of positive semi-definite matrices and An,

n> 1 be a sequence of nonnegative real numbers such that (i) I  (ii) Ai-- i>l i>l

converges (iii) X iA converges. hen( X A ) i) _  A, for every uch sequenceAn
i>1 Te i> 1>I

n> 1 f f R(An ) is -the same for all n >.
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Proof. The 'only if' part is proved as in Corollary 1. To prove the 'if' part,
n

assume that R(Ai) is the same for all i. Let B - jXiAi and B X i qA 1 . Let C
il n i>1

be a matrix having the same range as the At's and let 6 n 1 -- X,- If we assume

that at least one Xi is positive (lJ<n) in Bn, then R(Bn+6 nC) - R(B n ) - R(B). Since

B +6 CB as n--, following the argument given in Stewart (1969, p. 34) (see also
n n

Campbell and Meyer, 1979, Chapter 10), we see that (B n+ 8C)+ -B + as n-),. Applying

Corollary 1, we get (B + 6 C) +< A A ++...+X A + 6 C+ . The result now follows by
n n -11 n n n

taking limits as n-)-.

Remark 3. The results in this section proved for real symmetric positive semi-definite

matrices are also valid for complex hermitian positive semi-definite matrices, with

obvious modifications in the proofs.

3, Some Extensions and Applications;

In this section, we consider the problem of extending the inequality specialized

in Seciton 2 for a collection of positive semi-definite matrices indexed by a

probability space.

Let (Y,B,p) be a probability space and A y, ye Y a collection of positive semi-

definite matrices of the same order. Let Ay - ((a ijy)), l<i, j<n and ye Y. Assume

that aijy as a function of y is measurable for every 1< i, j <. There are three

basic questions one can ask in this connection.

(a) Let A - (b ), 1< i, J.<n, ye Y. Is bijY as a function of y measurable
y ijyiy

for every l< i, J< n?

(b) If the answer to (a) is affirmative and each aijy is integrable with

respect to the measure u, is each bijy integrable with respect to u?

(c) If the answers to (a) and (b) are affirmative, is the inequality

( _(dy)) f A<u(dy)
y y

true?
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We, first, tackle (a). We give two sets of sufficient conditions under which

A+ as a function of y is measurable.
y

Theorem 2.

(a) Suppose R(A ) is the same for all ye D e B with u(D)- 1. Then AI
y y

as a function of y is measurable.

(b) Suppose Y is a topological space and B is some a-field on Y containing

all open subsets of Y. Suppose R(A ) is the same for all y in Y.
y

If A-as a function of yeis continuous, then A+ as a function of y is
y y

continuous.

Proof: Let A be any symmetric matrix with R(Ay) = R(A) for every y in D. There

exists an orthogonal matrix P such that PAPT . diag(A,,O), where A* is a diagonal

matrix with diagonal entries being the non-zero eigen values of A. Since Range

(Ay) - Range (A), yE D, P A P - diag (A *,0) for some nonsingular matrix A*
y y y

which is of same order as A*. Note that A+ - PT diag((A,)-1 y )P. If A as a func-y y y

tion of y is measurable (continuous) so is A as a function of y. Consequently,

(A y) - as a function of y is measurable (continuous). Hence A as a function
y* y

of y is measurable (continuous).

Theorem 3.

(a) Suppose there exists a set De B such that l(D)- 1 and A A - A Ayl Y2  y2 yl

for every y ey2  D. Then A+ as a function of y is measurable.
y

(b) Suppose Y is a topological space and B is a a-field on Y containing all open

subsets of Y. Suppose A A -A A for all yy 2 Y.If A as a func-
YY 2  Yl yy y

ticM a$ y is continuous,- then-A as a function of y is continuous.y

We need the following lemma in the proof of the above theorem.

Lemm 1. Let {A y:y Y} be a family of pairwise commuting symmetric matrices of

order nxn. Then there exists an orthogonal matrix C such that

; 'i'i:- ' " ''.'- .t.'.. -. >%. -t.' ".' "". " "."- •""". .+.' "'' ." " : ° ''. "<.%', . : ' %
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CTAyC = diag{X y,,2y,...,X ny},

where X ly' 2 ,.. .ny are the eigenvalues of Ay

Proof: This result is well known when Y is finite. See,for example, Rao (1973,

Exercise 15, p. 72). LetQ be the least ordinal number corresponding to the cardinal

number of Y. 0 is obviously a limit ordinal. See Kamke (1950).

Let us identify Y with [0,Q). In other words, the given family of matrices can

be written down as a generalized sequence A0A,,A 2,...,A,..., < Q.

We claim that there exists a vector z(l ) of unit length such that it is an

eigenvector for every A a < 0. For this, we proceed as follows.

Let X10 be any eigenvalue of A0 . Let 0 < a< 0 be any ordinal number. Then, there

exists a vector x (a ) of unit length and real numbers X18' 8< a, satisfying the follow-

ing properties.

(i) i18 is an eigenvalue of Aa for every 0< 8< a.

(ii) AaX(a) 1i X(a ) for every 0< 8< a.

(iii) X', 0< O< a does not depend on a.

This x (A ) is obtained by transfinite induction as follows.

(1) (1) ()There exists a vector x of unit length such that A0x Xi0 x Note that
(1) 2 (0)

AAX ,... are eigenvectors of A0 corresponding to the same eigenvalue Xi0"

(1) (1) 2()Consequently, every vector in the linear manifold spanned by {x , Axx )  ...

is an eigenvector of A0 corresponding to the eigenvalue Xi0 This linear manifold

contains an eigenvector of A,. See Rao (1973, p. 39). Let us assume that this

(2)
eigenvector x 2 , say, is of unit length and the corresponding eigenvalue for A1

be X 11 Thus at the second stage, we have
A1x(2) . X10 x (2 )

(2) (2)

A,1x . X11x
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Now, since A0 and A2 commute and also A1 and A2 commute, every vector in the

linear mainfold spanned by {x ,A2 x 2 , A2x(2) .. } is an eigenvector of A0 correspond-

ing to the same eigenvalue X10 and also is an eigenvector of A1 corresponding to the

same eigenvalue Xii" This manifold contains an eigenvector x
( 3 ) of A2 ' Assume x(3 )

to be of unit length and X1 2 to be the corresponding eigenvalue of A2 . Thus we have

(3) (3)
A 0 x10

AX(3 = x ( 3

A2 x(3) (3)

Continuing this procedure for every n< w, where w is the first infinite ordinal

(n)
number, we find a sequence x , l< n< w, of vectors of unit length and a sequence

Xlk 0<k< w of real numbers satisfying the following property:

Ax~n  Alkx , 0< k< n.

It is important to note that once an eigenvalue enters into the system, it remains

in the system at every stage of the induction process.

Since each x n , l< n< w is of unit length, by compactness argument, this

sequence admits a convergent subsequence converging to x w , say. Obviously, this

vector is of unit length. Further,

Akx AlkX( w ) for 0< k< w.

(w) (w) 2 (w)
Now, every vector in the linear manifold spanned by {x w A w x A w " is

an eigenvector of Ak, 0<k< w, corresponding to the eigenvalue Alk' 0<k< w. But

this manifold contains an eigenvector x (w + l) of Aw . Let us assume thisvector to be

of unit length and let the corresponding eigenvalue of Aw be X lw Thus we have



(w+l) (w+l)
Akx Xlkx , 0<k<w+l.

This process is continued arguing separately for the case of limit ordinals and the

case of non-limit ordinals.

Now, by compactness argument, x (a, a < Q admits a subnet converging to a vector

z(I) of unit length. This vector is the desired one.

(2) (2) (1)Now, we claim that there exists a vector z of unit length such that z 2). z

and z ( 2 ) is a common eigenvector for each A , O< a< 2. Let X20 be an eigenvalue of

A0 admitting an eigenvector y such that y is of unit length and y1± z

(a)Let 0 < a < Q. We claim that there exists a vector y of unit length and real numbers

X2 8, 08< a, satisfying the following properties.

(i) X2 is an eigenvalue of A8.

(ii) A() =X (2 ) for every 0< 8<

(iii) y ± z

(iv) X2 f, 0<a < a is independent of a.

The y(U)'s and X26 's are obtained by transfinite induction as follows, At the first
step fora= i we ave (1)an 2_ ,.

step, for a= 1, we have y and satisfying (i) through (iv). Let a- 2. The

linear manifold spanned by {y( 1 ,Aly (1),y(I) .  contains an eigenvector y(2)
for AI with the corresponding eigenvalue, say, X21. Since A and A, commute, every

vector in this manifold is an eigenvector of A0 corresponding to the eigenvalue X20 .

Without loss of generality we can assume y(2) to be of unit length. Further,
(2) ( i) An y(1)-'

y I Z To prove this, consider . We have

(A()T (1) y()T An z(1) y(1)T(X )nZ(l) _ (l)n y(1)T z( 0

(1) (1) 2 (1)Consequently, every vector in the linear manifold spanned by {y( 1  ,Ay ,. .. }

y() (2) (1) (2)
is orthogonal to ze y z1) . Thus, we have a vector y of unit length

..............................................
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satisfying

A y (2) M )2ey(2) 0<_ 8<

and

(2) Cl)
y I z

This process is continued as in the first part of this proof noting that once an

eigenvalue X 2 enters the system it remains in the system. By compactness of the

unit ball of Rn, we can find a subnet of y( ), 0< a-.< f2 converging to a vector, say,

z 2) This z is the desired vector.

we can obtain n vectors z(1) (2) (n)Thus, ,z ,..,z satisfying the following

properties

(a) Ao (i) ll  0<1oi=,1iton.

(b) z I)  z j  iJ.

(c) Aa z M ) = X iaz)' O< a< 0 1- 1 to n.

("") (2) ,z(n)

Define C , z ,.. ). C is the required orthogonal matrix.

* (1) (2)
Proof of Theorem 3: By Lemma 1, there exists an orthogonal matrix C- (z ,z

...,z (n)) such that

I Oc TA C - Diag{X lyx 2y,....,ky} , y Y,

where X 'X2...,L are the eigenvalues of A . Let fi: Y- R be defined by
y2y ny y i

fi (y ) . Xjiy y E Y, i- 1 to n.

T-z i)A z (i) a linear

It is easy to check that each f is measurable.. For, fi(y) y ,

combination of the elements of Ay. Let g Y + R be defined by
-1

gf() y) if fi(y) 0 0

- 0 if fiy) - 0, yF Y, i- 1 to n.

7



gl'g2 ' " 'gn are, obviously, measurable functions. Now,

A C Diag{f1 (y),f 2 CY),.,fn (Y)}CT.

Then A+ = C Diag{gl(y) y),...,gn(Y)C T (see Rao and Mitra 1971, p. 69).

Consequently, the elements of A+ as functions on Y are measurable.
y

Now, we come to the question raised in (b). A+ as a function of y need not be
y

integrable. The following is a simple example. Let Y = (0,1), B = Borel a-field on

Y, P - Lebesgue measure on B, and A = (y), yE Y, is of order lxl. A as a functiony y

of y is integrable with respect to U but A+ is not.
y

The following result generalizes the inequality expounded in Section 2 and

answers the query raised in (c).

Theorem 5 Let R(A ) be the same for all yE DE B with v(D) - 1. Suppose A and A
y y y

as functions of y are integrable with respect to U. Then

[j A u(dy) ]+< f Ay v(dy).

y yY Y

Proof: Let D be the collection of all positive semi-definite matrices of the same

order nxn as that of A and range the same as that of A , ye D. Then V is a closed
y

convex subset of an appropriate finite-dimensional Euclidean space and the map y- A
y

fromY to D is measurable. By Theorem 1, the map A A from D to D is convex. Let

CE Rn be an arbitrary but fixed vector. Then the map f:D- R defined by f(A)- CTA+C

is convex. By Jensen's inequality (see Ferguson (1967, p. 76)),

A.
f(EA() < Ef(A(), i.e.,

_CT+ Ci(dy)

SCT(f Ay u(dy))C.

..

-* --

• -" ." " '." "'" " " "% "" "' ' " " ' -' ' '"- "." " " ' "" " "' '" '% " Y.
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This implies that, as C is arbitrary,

(f A~ u~dy))4 < ~f A jd)
y •y

Y Y

This completes the proof.

The condition on the range in the above theorem, in a certain sense, is necessary

for the inequlaity to be valid. If the above inequality is valid for all probability

measures for which the concerned integrals are finite, then the above conditon

on the range is necessary.

The above result can be couched in the language of random matrices as follows.

" Corollary 3. Let A be a symmetric matrix of random variables such that A is positive

semi-definite almost surely and R(A) is the same almost surely. Assume that EA and

EA+ exist. Then

(EA) < EA

The above inequality is an analogue of the usual Harmonic-Arithmetic inequality,

namely, if f is an almost surely positive random variables with Ef and Ef
-1

finite then (Ef) < Ef

We also obtain as a corollary the following result due to Groves and Rothenberg

(1969, p. 690). See also Srivastava (1970, p. 236).

Corollary 4. Let A be a symmetric matrix of random variables such that A is positive

definite almost surely, and EA and EA-1 exist. Then

(EA)-1 < EA-1.

Corollary 5. Let YIY2..YN be a random sample of size N form a multivariate

normal distribution with a singular variance covariance matrix E. Let Y be the
N -T + +

sample mean and S I (Yi-Y)(Yi-Y) T . If r - rank(E) and N> r, ther (ES) < E(S+).
i=i
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Proof: It is known that R(S)c RC() and rank(S) - rank(E) with probability 1 when N> r.

Hence R(S) - R(E) almost surely, The result now follows from Corollary 3.
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